Центр нанотехнологий
Центр высшего образования
Центр общего образования

Поиск

Информация о сотруднике

Дубровский Владимир Германович


 
 
English version
 

Родился 15 октября 1965 в г. Ленинграде

Образование:

1982 - 1988 Ленинградский государственный университет, Физический факультет, Кафедра статистической физики

1991 - 1992 Оксфордский университет (Великобритания), Department of Engineering Science

Диссертации:

1990 Кинетические модели роста кластеров и тонких пленок К.ф.-м.н. Физика приборов, техника физического эксперимента, автоматизация физических исследований

2002 Кинетические модели образования пространственно-упорядоченных структур на поверхности твердого тела Д.ф.-м.н. Физика конденсированного состояния

Опыт работы:

1988 – 1989 Институт аналитического приборостроения РАН (ИАнП РАН), лаборатория масс-спектрометрии, С.-Петербург Стажер-исследователь

1989 – 1992 ИАнП РАН, лаборатория масс-спектрометрии Младший научный сотрудник

1992 – 1995 ИАнП РАН, лаборатория приборов и методом эпитаксиальных нанотехнологий Старший научный сотрудник

1995 – 1998 ИАнП РАН Ученый секретарь

1998 – 2002 ОАО «Научные приборы», С.-Петербург Заместитель директора по научной работе

С 2002 ФТИ им. А.Ф. Иоффе РАН, лаборатория физики полупроводниковых гетероструктур, С.-Петербург Ведущий научный сотрудник

с 2006 Санкт-Петербургский академический университет РАН Заместитель директора Центра нанотехнологий Nanotechnology Centre Заведующий лабораторией физики наноструктур, Заведующий кафедрой теоретической физики (с 2009 г.), профессор кафедры физики и технологии наноструктур

С 2006 Санкт- Петербургский государственный университет, Физический факультет, кафедра физики твердого тела Профессор

С 2006 Санкт- Петербургский государственный политехнический университет, Физико-технический факультет, кафедра физики и технологии наноструктур Профессор

С 2010 Международная ассоциированная российско-французская лаборатория “Nanostructures of compound semiconductors, Growth, Properties, Devices” Российский координатор

Членство в научных советах и комитетах:

  • Международный симпозиум “Nanostructures: Physics and Technology”, член международного Программного комитета
  • Международная школа International Nano-Optoelectronic Workshop iNOW, член международного Программного комитета
  • Санкт-Петербургский академический университет, член Ученого Совета и Президиума Ученого совета
  • Санкт-Петербургский академический университет, ученый секретарь Специализированного диссертационного совета
  • Санкт-Петербургский государственный университет, Физический факультет, член Специализированного диссертационного совета

Научные интересы:

  • Физика полупроводниковых наноструктур
  • Теория конденсированного состояния
  • Теория полупроводниковых нитевидных нанокристаллов: рост и физические свойства
  • Теория формирования эпитаксиальных наноструктур
  • Кинетика фазовых переходов первого рода, теория нуклеации
  • Технологии эпитаксии одно- и нульмерных наноструктур

Награды, премии, почетные звания:

  • 111 fellowship (high level long term visiting scientist) at Beijing University of Posts and Telecommunications (China) (2007-2011)
  • Почетная грамота «За педагогическое мастерство» за победу в номинации «Педагогические новации» Санкт-Петербургский государственный университет, Физический факультет (2009)
  • Премия за лучшую научную работу Центра физики наногетероструктур ФТИ им. А.Ф. Иоффе РАН (2005)

Список публикаций включает:

  • более 100 статей, входящих в международную систему цитирования ISI Web of Knowledge
  • более 20 статей в журналах Американского физического и химического обществ и Американского института физики (Nano Letters, Cryst. Growth & Design, Phys. Rev. B, J. Chem. Phys., Phys. Rev. E, J. Appl. Phys)

Монографии и учебные пособия:

В.Г.Дубровский. «Теоретические основы полупроводниковой нанотехнологии». Учебно-методическое пособие. С.-Петербург: Изд. СПбГУ, 2007, 343 с.

В.Г. Дубровский. «Теория формирования эпитаксиальных наноструктур». М.: Физматлит, 2009, 352 с.

Лекционные курсы:

Теоретические основы эпитаксии наноструктур (Санкт-Петербургский политехнический университет, Физико-технический факультет, кафедра физики и технологии наноструктур, 8 семестр)

Дополнительные главы статистической физики (Санкт-Петербургский академический университет, кафедра теоретическиой физики, 9-11 семестры)

Теоретические основы полупроводниковых нанотехнологий (Санкт-Петербургский университет, Физический факультет, кафедра физики твердого тела, 9 семестр)

МЕЖДУНАРОДНОЕ НАУЧНО-ПЕДАГОГИЧЕСКОЕ СОТРУДНИЧЕСТВО :

Prof. X. Ren (Beijing University of Posts and Telecommunications, Beijing, China) Prof. F. Glas and Prof. J.C. Harmand (LPN CNRS, Marcoussis, France) Dr. P. Werner (MPI Halle, Germany) Prof. C.Chang-Hasnain (UC Berkeley, USA) Prof. D. Bimberg (Technical University Berlin) Prof. H. Lipsanen (Helsinki University of Technology, Finland) Prof. P. Pareige (University of Rouen, France) Dr. D. Zeze (Department of Fhysics, Durham University, UK) Prof. Xiaomin Ren (BUPT, Beijing, China) Prof. C.Z. Ning (Arizona State University, Tempe, USA) Dr B. Grandidier (Institut d’Electronique de Microelectronique et de Nanotechnologie, Lille, France)

Избранные научные работы:

Полупроводниковые нитевидные нанокристаллы – рост и физические свойства:

- V.G.Dubrovskii, G.E.Cirlin, I.P.Soshnikov, A.A.Tonkikh, N.V.Sibirev, Yu.B.Samsonenko, V.M.Ustinov. «Diffusion induced growth of GaAs nanowhiskers: theory and experiment». Phys. Rev. B, 2005, v.71, issue 20, Art. № 205325.

- V.G.Dubrovskii and N.V.Sibirev. «Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires». Phys. Rev. B, 2008, v. 77, Art. № 035414 (8 p.).

- V.G.Dubrovskii, N.V.Sibirev, J.C.Harmand and F.Glas. «Growth kinetics and crystal structure of semiconductor nanowires». Phys. Rev. B, 2008, v.78, Art. № 235301.

- V.G. Dubrovskii1, N.V. Sibirev, G.E. Cirlin, I.P. Soshnikov, W.H. Chen, R. Larde, E. Cadel, P. Pareige, T. Xu, B. Grandidier , J.-P. Nys, D. Stievenard, M. Moewe, L.C. Chuang, and C. Chang-Hasnain. “Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP and GaAs nanowires”. Phys. Rev. B, 2009, v.79, Art. № 205316.

- V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, M. Tchernycheva, J.C. Harmand and V.M. Ustinov. «Shape modification of III-V nanowires: the role of nucleation on sidewalls». Phys. Rev. E, 2008, v. 77, Art. № 031606.

- V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, A. D. Bouravleuv, Yu.B. Samsonenko, D.L. Dheeraj, H.L. Zhou, C. Sartel, J.C. Harmand, G. Patriarche, and F. Glas. “Role of non-linear effects in nanowire growth and crystal phase”. Phys. Rev. B, 2009, v. 80, Art. № 066940.

- Michael Moewe, Linus C. Chuang, Vladimir G. Dubrovskii, and Connie Chang-Hasnain. «Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates». J. Appl. Phys., 2008, v. 104, Art. № 044313.

- M. Tchernycheva, L. Travers, G. Patriarche, J.C. Harmand, G.E. Cirlin and V.G. Dubrovskii. «Au-assisted molecular beam epitaxy of InAs nanowires : growth and theoretical analysis». J. Appl. Phys., 2007, v. 102, Art. № 094313.

- V.G.Dubrovskii1, N.V.Sibirev, G.E.Cirlin, J.C.Harmand, and V.M.Ustinov. “Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during MBE”. Phys. Rev. E, 2006, v.73, Art. № 021603.

- G.E. Cirlin, V.G. Dubrovskii, Yu.B. Samsonenko, A.D. Bouravleuv, K. Durose, Y.Y. Proskuryakov, Budhikar Mendes, L. Bowen, M. A. Kaliteevski, R.A. Abram, and Dagou Zeze. “Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy”. Phys. Rev. B, 2010, v. 82, Art. № 035302.

Теория формирования эпитаксиальных наноструктур:

-V.G.Dubrovskii, G.E.Cirlin and V.M.Ustinov. «Kinetics of the initial stage of coherent island formation in heteroepitaxial systems». Phys. Rev. B, 2003, v.68, Art. № 075409.

-V.G.Dubrovskii, G.E.Cirlin, Yu.G.Musikhin, Yu.B.Samsonenko, A.A.Tonkikh, N.K.Polyakov, V.A.Egorov, A.F.Tsatsul’nikov, N.A.Krizhanovskaya, V.M.Ustinov and P. Werner. «The effect of growth kinetics on the structural and optical properties of quantum dot ensembles». J. Cryst. Growth, 2004, v. 267, №1-2, p. 47-59.

-V.G.Dubrovskii. «Kinetically controlled engineering of quantum dot arrays». Phys. Stat. Sol (b), 2003, v. 238, № 2, p.R1.

-V.G.Dubrovskii, G.E.Cirlin and V.M.Ustinov. «The effective thickness, temperature and growth rate behavior of quantum dot ensembles». Phys. Stat. Sol.(b), 2004, v.241, №10, p.R42-R45.

-V.G.Dubrovskii, D.A.Bauman, V.V.Kozachek, V.V.Mareev, G.E.Cirlin. “Kinetic models of self-organization effects in lattice systems”. Physica A, 1998, v.260, №3-4, p.349

-V.G.Dubrovskii. “Diffusion-induced islanding in heteroepitaxial systems”. Physica A, 2002, v.307, №1-4, p.228-245.

Технологии МПЭ и свойства полупроводниковых наноструктур:

-G.E.Cirlin, V.N.Petrov, A.O.Golubok, S.Ya.Tipissev, V.G.Dubrovskii, G.M.Guryanov, N.N.Ledentsov, D.Bimberg. “Effect of growth kinetics influence on the InAs/GaAs quantum dot arrays formation on vicinal surfaces”. Surf.Sci., 1997, v.377-379, p.895.

-G.E.Cirlin, V.G.Dubrovskii, V.N.Petrov, N.K.Polyakov, N.P.Korneeva, V.N.Demidov, A.O.Golubok, S.A.Masalov, D.V.Kurochkin, O.M.Gorbenko, N.I.Komyak, V.M.Ustinov, A.Yu.Egorov, A.R.Kovsh, M.V.Maximov, A.F.Tsatusul'nikov, B.V.Volovik, A.E.Zhukov, P.S.Kop'ev, Zh.I.Alferov, N.N.Ledentsov, M.Grundmann, D.Bimberg. "Formation of InAs quantum dots on a silicon (100) surface", Semicond.Sci.Technol., v.13, 1998, p.1262.

- M.H. Sun, E.S.P. Leong, A.H. Chin, C.Z. Ning, G.E. Cirlin, Yu.B. Samsonenko, V.G. Dubrovskii, L. Chuang, and C. Chang-Hasnain. “Photoluminescence properties of InAs nanowires grown on GaAs and Si substrates”. Nanotechnology, 2010, v. 21, Art. № 335705 (9 p.).

- G.E. Cirlin, A.D. Bouravleuv, I.P. Soshnikov, Yu.B. Samsonenko, V.G. Dubrovskii, E.M. Arakcheeva, E.M. Tanklevskaya, and P. Werner. “Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate”. Nanoscale Res. Lett., 2010, v. 5, p. 360–363.

Кинетика фазовых переходов первого рода, теория нуклеации:

- V.G. Dubrovskii. “Fluctuation-induced spreading of size distribution in condensation kinetics”. J. Chem. Phys., 2009, v. 131, Art. № 164514.

- V.G. Dubrovskii and M.V. Nazarenko. “Nucleation theory beyond the deterministic limit. I. The nucleation stage”. J. Chem. Phys., 2010, v. 132, Art. # 114507.

- V.G. Dubrovskii and M.V. Nazarenko. “Nucleation theory beyond the deterministic limit. II. The growth stage”. J. Chem. Phys., 2010, v. 132, Art. # 114508.

- V.G. Dubrovskii, N.V. Sibirev, X. Zhang, R. A. Suris. “Stress-driven nucleation of three-dimensional crystal islands: from quantum dots to nanoneedles”. Cryst. Growth & Design, 2010, v. 10, p. 3949-3955.

 
 

Vladimir G. Dubrovskii

 
 
  • Born: 15 October 1965 (age 51) in St. Petersburg, Russia
  • Fields: Condensed matter physics, Semiconductor nanostructures and nanowires, Nucleation theory
  • Institutions: St. Petersburg Academic University, Ioffe Institute, St. Petersburg State University, ITMO University
  • Alma Mater: St. Petersburg State University

Vladimir G. Dubrovskii (born in 1965) is the head of Laboratory of physics of nanostructures at St. Petersburg Academic University, a leading research scientist at Ioffe Institute, and a professor at St. Petersburg State University and ITMO University.

Educational background: Dubrovskii graduated from St. Petersburg State University, Department of Statistical Physics, in 1988, with a diploma in theoretical physics. In 1991, he was a post-doc research fellow in Oxford University. He obtained his PhD in 1990 and a doctor of sciences degree in 2002, in condensed matter physics.

Contributions to physics: Dubrovskii has made contributions to several fields of physics. Semiconductor nanostructures and nanowires: He is best known for growth modeling of semiconductor nanostructures, particularly III-V nanowires. Starting from 2003, he is at the forefront of research in this field, collaborating with more than 40 groups in 18 countries (with joint publications). His main area is in kinetically controlled engineering of nanostructures, including morphology, crustal phase, and size distributions. In 2005, he and coauthors proved a diffusion-induced character of gold-assisted vapor-liquid-solid (VLS) growth of GaAs nanowires by molecular beam epitaxy [1]. In 2008-2014, following Frank Glas [2], he developed theoretical approaches for understanding and controlling polytypism of III-V nanowires by the growth parameter tuning [3] and catalyst material [4]. This allowed achieving record small GaAs nanowires (down to 5 nm in radius) with pure zincblende structure [5]. Independently of Jerry Tersoff [6], in 2013-2015 he predicted a non-linear focusing effect [7,8] that enabled self-organized ensembles of GaAs nanowires with uniform radii [8]. The works of 2016 brought up the new size distributions describing length statistics in nanowire ensembles [9,10]. In 2015-2016, he developed the first theory for the compositional control of ternary III-V nanowires [11], sharpening their axial heterointerfaces [12] and, more generally, nucleation theory of ternary solids from ternary and quaternary liquid alloys. He contributed into understanding the VLS versus selective area growth of nanowires [13] and self-induced nucleation of GaN nanowires on silicon substrates [14].

Classical nucleation theory: In 2009, Dubrovskii discovered fluctuation-induced broadening (the Dubrovskii broadening) of the size distributions described by a Fokker-Planck type kinetic equation in terms of the Kuni invariant variables [15], and presented a map of the power exponents for the spectrum spreading in 2D and 3D systems. Further studies revealed the influence of kinetic fluctuations on the size distributions of islands and droplets in the stages of their nucleation, growth, and Ostwald ripening [16,17]. He also contributed into binary nucleation theory with a saddle point of the formation energy, with applications in growth theory of strain-induced islands [18] and ternary VLS nanowires. Statistical size distributions and scaling properties: In 1996, he published exact solution for the infinite set of rate equations for heterogeneous growth with size-linear rate constants [19], reduced to one-parametric Polya distribution. Further investigation of the growth systems with size-linear capture rates led to a two-parametric modified beta-distribution (2015) [20] which acquires the Vicsek-Family scaling form [21] in the continuum limit. Distributions of this type are now widely used for modeling the growth kinetics of semiconductor nanostructures, surface islands and biological objects. Self-regulated nucleation and growth in nanosystems: From 2004, Dubrovskii pursued growth theories in confined systems with a limited amount of growth species in the mother phase. He developed concepts of “mononuclear” growth [22,23] whereby individual nucleation events predetermine physical properties of emerging nanomaterials. He developed methods of using different size-dependent effects for narrowing size distributions [8,24-26]. Together with Frank Glas, he predicted narrow sub-Poissonian size distributions [27] in systems with nucleation antibunching [28], and derived analytical asymptotes for their time-independent shapes.

Elastic relaxation and plastic deformation in nanostructures: He and coauthors developed semi-analytical models for elastic relaxation and misfit dislocations in nanostructures grown on lattice-mismatched substrates [29] and contributed into development of epitaxial techniques for monolithic integration of high quality optical III-V nanostructures with silicon electronic platform [8,18,30]. Research style: Dubrovskii prefers analytical calculations to computers and tries to present theoretical models for complex growth behavior in a simple analytic form with a minimum number of physically transparent parameters.

Current research interests: Dubrovskii main areas are currently in modeling and shaping of sophisticated nanowire nanoheterostructures, nucleation theory in the nanoscale, physical chemistry of alloys and compounds, and analytic size distributions. He is working with experimentalists on design and functionalization of optoelectronic nanoheterostructures.

Lecture courses and PhD students: Dubrovskii is lecturing in nucleation theory, epitaxy of nanostructures and growth modeling of nanowires. He has supervised 10 PhD students, 2 of them under European Marie Curie Initial Training Networks.

Books and book chapters:

  • V. G. Dubrovskii, Growth kinetics of epitaxial nanostructures, Fizmatlit, Moscow (2009) (in Russian).
  • V. G. Dubrovskii, Nucleation theory and growth of nanostructures. Springer, Heidelberg – New York – Dordrecht – London, 2014.
  • V. G. Dubrovskii, Theory of VLS growth of compound semiconductors. In: A. Fontcuberta i Morral, S. A. Dayeh and C. Jagadish, editors, Semiconductors and Semimetals, v. 93, Burlington: Academic Press, 2015, pp. 1-78.

Appointments and memberships:

  • Semiconductor Science and Technology journal, member of Editorial board (since 2017)
  • Nanomaterials and Nanotechnology journal, member of Editorial board (since 2016)
  • Technical Physics Letters, member of Editorial board (since 2011)
  • International Nano-Optoelectronic Workshop, member of Steering Committee (since 2010)
  • Nanowire Week, member of Steering Committee (since 2011)
  • Euro MBE conference, member of International Program Committee (since 2017)
  • International symposium “Nanostructures: Physics and Technology”, member of International Program Committee (since 2008)
  • French-Russian associated international laboratory “Nanostructures of Compound Semiconductors: Growth, Properties, Devices”, Russian scientist-in-charge.
  • Zh. I. Alferov Russian-Chinese joint laboratory of information optoelectronics and nanoheterostructures, Deputy director (from 2010).

Publication record: Dubrovskii has authored and co-authored more than 500 research papers in leading technical journals and conferences, with more than 200 journal papers indexed by WoS. His Hirsh-index is 34 (WoS).

Honors: Chevalier of Ordre des Palmes académiques, France (2017). Guest professor at Clermont Université, Clermont-Ferrand, France (2014). Regular high-level visiting scientist in the International Guest Academic Talents (IGAT) Base at Beijing University of Posts and Telecommunications, China (2007-2016). Distinguished Visiting Fellow of the Royal Academy of Engineering, Durham University, UK (2010).

References:

[1] V. G. Dubrovskii et al., Phys. Rev. B 71, 205325 (2005).

[2] F. Glas et al., Phys. Rev. Lett. 99, 146101 (2007).

[3] V. G. Dubrovskii et al., Phys. Rev. B 77, 035414 (2008).

[4] V. G. Dubrovskii et al., Nano Lett. 11, 1247 (2011).

[5] E. Gil, V. G. Dubrovskii et al., Nano Lett. 14, 3938 (2014).

[6] J. Tersoff, Nano Lett. 15, 6609 (2015).

[7] G. Priante, S. Ambrosini, V. G. Dubrovskii et al., Cryst. Growth Des.13, 3976 (2013).

[8] V. G. Dubrovskii et al., Nano Lett. 15, 5580 (2015).

[9] V. G. Dubrovskii et al., Cryst. Growth Des. 16, 2167 (2016).

[10] V. G. Dubrovskii et al., Nanotechnology 27, 375602 (2016).

[11] V. G. Dubrovskii, Cryst. Growth Des.15, 5738 (2015).

[12] V. G. Dubrovskii and N. V. Sibirev, Cryst. Growth Des. 16, 2019 (2016).

[13] Q. Gao, V. G. Dubrovskii et al., Nano Lett. 16, 4361 (2016).

[14] V. G. Dubrovskii et al., Phys. Rev. B 85, 165317 (2012).

[15] V. G. Dubrovskii, J. Chem. Phys. 131, 164514 (2009).

[16] V. G. Dubrovskii and M. V. Nazarenko, J. Chem. Phys. 132, 114507 (2010).

[17] V. G. Dubrovskii et al., J. Chem. Phys. 134, 094507 (2011).

[18] V. G. Dubrovskii et al., Cryst. Growth Des. 10, 3949 (2010).

[19] V. G. Dubrovsky, Theor. Math. Phys. 108, 1110 (1996).

[20] V. G. Dubrovskii and N. V. Sibirev, Phys. Rev. E 91, 042408 (2015).

[21] T. Vicsek and F. Family, Phys. Rev. Lett. 52, 1669 (1984).

[22] V. G. Dubrovskii and N. V. Sibirev, Phys. Rev E 70, 031604 (2004).

[23] V. G. Dubrovskii and J. Grecenkov, Cryst. Growth Des. 15, 340 (2015).

[24] V. G. Dubrovskii et al., Phys. Rev. Lett. 108, 105501 (2012).

[25] V. G. Dubrovskii, Phys. Rev. B 87, 195426 (2013).

[26] V. G. Dubrovskii, Phys. Rev. B 93, 174203 (2016).

[27] F. Glas and V. G. Dubrovskii, Phys. Rev. B, submitted (2017).

[28] F. Glas et al., Phys. Rev. Lett. 104, 135501 (2010).

[29] X. Zhang, V. G. Dubrovskii et al., Cryst. Growth Des. 11, 5441 (2011).

[30] K. W. Ng et al., ACS Nano 7, 100 (2013).

 
 
 

Контакты

Телефон: +007 812 448 6982
E-mail: dubrovskii@mail.ioffe.ru